Spectral sets and derivatives of the psd cone

Mario Kummer
TU Berlin

August 28, 2020
A spectrahedral cone is a set of the form

\[S = \{ x \in \mathbb{R}^n : A(x) = x_1 A_1 + \ldots + x_n A_n \text{ is positive semidefinite} \}, \]

where \(A_1, \ldots, A_n \in \text{Sym}_2(\mathbb{R}^d) \) are real symmetric \(d \times d \) matrices.
A **spectrahedral cone** is a set of the form

\[S = \{ x \in \mathbb{R}^n : A(x) = x_1 A_1 + \ldots + x_n A_n \text{ is positive semidefinite} \}, \]

where \(A_1, \ldots, A_n \in \text{Sym}_2(\mathbb{R}^d) \) are real symmetric \(d \times d \) matrices.

- Feasible sets of semidefinite programming.
A **spectrahedral cone** is a set of the form

\[S = \{ x \in \mathbb{R}^n : A(x) = x_1 A_1 + \ldots + x_n A_n \text{ is positive semidefinite} \} , \]

where \(A_1, \ldots, A_n \in \text{Sym}_2(\mathbb{R}^d) \) are real symmetric \(d \times d \) matrices.

- Feasible sets of semidefinite programming.
- Polyhedral cones: Take \(A(x) \) to be diagonal.
A **spectrahedral cone** is a set of the form

$$S = \{ x \in \mathbb{R}^n : A(x) = x_1A_1 + \ldots + x_nA_n \text{ is positive semidefinite} \},$$

where $A_1, \ldots, A_n \in \text{Sym}_2(\mathbb{R}^d)$ are real symmetric $d \times d$ matrices.

- Feasible sets of semidefinite programming.
- Polyhedral cones: Take $A(x)$ to be diagonal.

Question

- Which sets $K \subset \mathbb{R}^n$ are spectrahedral?
Spectrahedral cones

\[S = \{ x \in \mathbb{R}^n : A(x) = x_1A_1 + \ldots + x_nA_n \text{ is positive semidefinite} \} . \]

- Fix \(e \in \text{int}(S) \). W.l.o.g. \(A(e) = I_d \).
- The polynomial \(\det A(x) \) is hyperbolic in the following sense:
S = \{ x \in \mathbb{R}^n : A(x) = x_1A_1 + \ldots + x_nA_n \text{ is positive semidefinite} \}.

Fix \ e \in \text{int}(S). \ W.l.o.g. \ A(e) = I_d.

The polynomial \(\det A(x) \) is hyperbolic in the following sense:

Definition A homogeneous polynomial \(h \in \mathbb{R}[x_1, \ldots, x_n] \) is hyperbolic with respect to \(e \in \mathbb{R}^n \) if \(h(e) \neq 0 \) and if \(h(te - v) \) has only real roots for all \(v \in \mathbb{R}^n \).
Spectrahedral cones

\[S = \{ x \in \mathbb{R}^n : A(x) = x_1A_1 + \ldots + x_nA_n \text{ is positive semidefinite} \}. \]

- Fix \(e \in \text{int}(S) \). W.l.o.g. \(A(e) = I_d \).
- The polynomial \(\det A(x) \) is hyperbolic in the following sense:

Definition A homogeneous polynomial \(h \in \mathbb{R}[x_1, \ldots, x_n] \) is **hyperbolic** with respect to \(e \in \mathbb{R}^n \) if \(h(e) \neq 0 \) and if \(h(te - v) \) has only real roots for all \(v \in \mathbb{R}^n \). The **hyperbolicity cone** is

\[C(h, e) = \{ v \in \mathbb{R}^n : h(te - v) \text{ has only nonnegative roots} \}. \]
Spectrahedral cones

\[S = \{ x \in \mathbb{R}^n : A(x) = x_1 A_1 + \ldots + x_n A_n \text{ is positive semidefinite} \}. \]

- Fix \(e \in \text{int}(S) \). W.l.o.g. \(A(e) = I_d \).
- The polynomial \(\det A(x) \) is hyperbolic in the following sense:

Definition A homogeneous polynomial \(h \in \mathbb{R}[x_1, \ldots, x_n] \) is hyperbolic with respect to \(e \in \mathbb{R}^n \) if \(h(e) \neq 0 \) and if \(h(te - v) \) has only real roots for all \(v \in \mathbb{R}^n \). The hyperbolicity cone is

\[C(h, e) = \{ v \in \mathbb{R}^n : h(te - v) \text{ has only nonnegative roots} \}. \]

- \(\det A(te - v) = \det(tI_d - A(v)) \).
Spectrahedral cones

\[S = \{ x \in \mathbb{R}^n : A(x) = x_1 A_1 + \ldots + x_n A_n \text{ is positive semidefinite} \} . \]

- Fix \(e \in \text{int}(S) \). W.l.o.g. \(A(e) = I_d \).
- The polynomial \(\det A(x) \) is hyperbolic in the following sense:

Definition A homogeneous polynomial \(h \in \mathbb{R}[x_1, \ldots, x_n] \) is hyperbolic with respect to \(e \in \mathbb{R}^n \) if \(h(e) \neq 0 \) and if \(h(te - v) \) has only real roots for all \(v \in \mathbb{R}^n \). The hyperbolicity cone is

\[C(h, e) = \{ v \in \mathbb{R}^n : h(te - v) \text{ has only nonnegative roots} \} . \]

- \(\det A(te - v) = \det(tI_d - A(v)) \).
- \(S = C(\det A(x), e) \).
Conjecture. Let $h \in \mathbb{R}[x_1, \ldots, x_n]$ be hyperbolic with respect to $e \in \mathbb{R}^n$. Then $C(h, e)$ is spectrahedral.
Conjecture. Let $h \in \mathbb{R}[x_1, \ldots, x_n]$ be hyperbolic with respect to $e \in \mathbb{R}^n$. Then $C(h, e)$ is spectrahedral.

True if:

- $\deg h \leq 2$.
- $n \leq 3$. (Helton–Vinnikov)
- $n = 4$ and $\deg h = 3$. (Buckley–Košir)
The following polynomials are hyperbolic with respect to e:

- $\det A(x)$ for $A(x)$ real symmetric matrix with linear entries and $A(e)$ positive definite.

Includes spanning tree polynomials of graphs, bases generating polynomials of regular matroids and ternary hyperbolic polynomials.
The following polynomials are hyperbolic with respect to e:

- $\det A(x)$ for $A(x)$ real symmetric matrix with linear entries and $A(e)$ positive definite.

Includes spanning tree polynomials of graphs, bases generating polynomials of regular matroids and ternary hyperbolic polynomials.

Their hyperbolicity cones are clearly spectrahedral.
The following polynomials are hyperbolic with respect to e:

- The homogeneous multivariate matching polynomial of an undirected graph $G = (V, E)$:

$$\mu_G(x, w) = \sum (-1)^{|M|} \cdot \prod_{v \notin V(M)} x_v \cdot \prod_{e \in M} w_e^2$$

where the sum is over all matchings M of G. (Heilmann–Lieb)

- $e = (1_V, 0_E)$.
Constructing hyperbolic polynomials

The following polynomials are hyperbolic with respect to e:

- The homogeneous multivariate matching polynomial of an undirected graph $G = (V, E)$:

$$
\mu_G(x, w) = \sum (-1)^{|M|} \cdot \prod_{v \notin V(M)} x_v \cdot \prod_{e \in M} w_e^2
$$

where the sum is over all matchings M of G. (Heilmann–Lieb)

- $e = (1_V, 0_E)$.

Their hyperbolicity cones are spectrahedral (Amini).
The following polynomials are hyperbolic with respect to e:

- The defining polynomial of the kth secant variety of a projectively normal M-curve with “many” pseudolines in \mathbb{P}^{2k+2}. (K.–Sinn)

Their hyperbolicity cones are spectrahedral for rational and elliptic curves.
These operations preserve being hyperbolic with respect to e:

- Taking products.
- Restricting to a linear subspace containing e.
- Applying linear changes of coordinates (e might change).
These operations preserve being hyperbolic with respect to \(e \):

- Taking products.
- Restricting to a linear subspace containing \(e \).
- Applying linear changes of coordinates (\(e \) might change).

These operations also preserve spectrahedrality of the corresponding hyperbolicity cones.
Consequence of Rolle’s Theorem:

- If a polynomial \(p \in \mathbb{R}[t] \) has only real zeros, then its derivative \(p' \) has only real zeros.
Consequence of Rolle’s Theorem:

- If a polynomial \(p \in \mathbb{R}[t] \) has only real zeros, then its derivative \(p' \) has only real zeros.

This implies:

- If a polynomial \(h \in \mathbb{R}[x_1, \ldots, x_n] \) is hyperbolic with respect to \(e \), then its directional derivative

\[
D_e h = \sum_{i=1}^{n} e_i \cdot \frac{\partial h}{\partial x_i}
\]

is hyperbolic with respect to \(e \) as well.
Consequence of Rolle’s Theorem:

- If a polynomial \(p \in \mathbb{R}[t] \) has only real zeros, then its derivative \(p' \) has only real zeros.

This implies:

- If a polynomial \(h \in \mathbb{R}[x_1, \ldots, x_n] \) is hyperbolic with respect to \(e \), then its directional derivative

\[
D_\mathbf{e} h = \sum_{i=1}^n e_i \cdot \frac{\partial h}{\partial x_i}
\]

is hyperbolic with respect to \(e \) as well.

Question Is the hyperbolicity cone of \(D_\mathbf{e}(\det A(x)) \) spectrahedral?
Consequence of Rolle’s Theorem:

- If a polynomial $p \in \mathbb{R}[t]$ has only real zeros, then its derivative p' has only real zeros.

This implies:

- If a polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ is hyperbolic with respect to e, then its directional derivative

$$D^k_e h = \sum_{i=1}^n e_i \cdot \frac{\partial h}{\partial x_i}$$

is hyperbolic with respect to e as well.

Question Is the hyperbolicity cone of $D^k_e (\det A(x))$ spectrahedral?
The polynomial

\[h = x_1 \cdots x_d \]

is hyperbolic with respect to \(e = (1, \ldots, 1) \).
Example

The polynomial

\[h = x_1 \cdots x_d \]

is hyperbolic with respect to \(e = (1, \ldots, 1) \).

\[\text{D}_{e}^{n-k} h = (n - k)! \sigma_{k,d} \]

where \(\sigma_{k,d} \) is the elementary symmetric polynomial in \(d \) variables of degree \(k \).
Example

The polynomial

\[h = x_1 \cdots x_d \]

is hyperbolic with respect to \(e = (1, \ldots, 1) \).

- \(D^{n-k}_e h = (n-k)! \sigma_{k,d} \) where \(\sigma_{k,d} \) is the elementary symmetric polynomial in \(d \) variables of degree \(k \).
- \(\sigma_{k,d} \) is hyperbolic with respect to \(e = (1, \ldots, 1) \).
Example

The polynomial

\[h = x_1 \cdots x_d \]

is hyperbolic with respect to \(e = (1, \ldots, 1) \).

- \(D_e^{n-k} h = (n - k)! \sigma_{k,d} \) where \(\sigma_{k,d} \) is the elementary symmetric polynomial in \(d \) variables of degree \(k \).
- \(\sigma_{k,d} \) is hyperbolic with respect to \(e = (1, \ldots, 1) \).
- The hyperbolicity cone of \(\sigma_{k,d} \) is spectrahedral (Brändén).
Renegar derivatives

Question Is the hyperbolicity cone of $D^k_e(\det A(x))$ spectrahedral?

- It suffices to prove that the hyperbolicity cone of $D^k_I(\det X)$ is spectrahedral where X is the *generic* $d \times d$ symmetric matrix and I the $d \times d$ identity matrix.
Question Is the hyperbolicity cone of $D^k_{e}(\det A(x))$ spectrahedral?

- It suffices to prove that the hyperbolicity cone of $D^k_{I}(\det X)$ is spectrahedral where X is the generic $d \times d$ symmetric matrix and I the $d \times d$ identity matrix.

Let us write

$$\det(tI - X) = \sum_{k=0}^{d} (-1)^k p_k t^{d-k}$$

for suitable polynomials p_k of degree k ($p_1 = \text{tr}(X), p_d = \det(X)$).
Question Is the hyperbolicity cone of $D^k_e(\det A(x))$ spectrahedral?

- It suffices to prove that the hyperbolicity cone of $D^k_I(\det X)$ is spectrahedral where X is the generic $d \times d$ symmetric matrix and I the $d \times d$ identity matrix.

Let us write

$$
\det(tI - X) = \sum_{k=0}^{d} (-1)^k p_k t^{d-k}
$$

for suitable polynomials p_k of degree k ($p_1 = \text{tr}(X)$, $p_d = \det(X)$).

- $p_k = \frac{1}{(d-k)!} D^k_I(\det X)$.
Question Is the hyperbolicity cone of $D^k_e(\det A(x))$ spectrahedral?

- It suffices to prove that the hyperbolicity cone of $D^k_l(\det X)$ is spectrahedral where X is the generic $d \times d$ symmetric matrix and I the $d \times d$ identity matrix.

Let us write

$$\det(tI - X) = \sum_{k=0}^{d} (-1)^k p_k t^{d-k}$$

for suitable polynomials p_k of degree k ($p_1 = \text{tr}(X)$, $p_d = \det(X)$).

- $p_k = \frac{1}{(d-k)!} D^d_{l-k}(\det X)$.
- $p_k = \sigma_{k,d}(\lambda(X))$ where $\sigma_{k,d}$ is the elementary symmetric polynomial of degree k in d variables and $\lambda(X)$ the vector of eigenvalues of X.
Theorem (Bauschke–Güler–Lewis–Sendov) Let $h \in \mathbb{R}[x_1, \ldots, x_n]$ a symmetric polynomial that is hyperbolic with respect to $e = (1, \ldots, 1)$. Consider the function

$$H : \text{Sym}_2(\mathbb{R}^d) \to \mathbb{R}, \; X \mapsto h(\lambda(X))$$

where $\lambda(X)$ is the vector of eigenvalues of X.

a) H is a polynomial.
Theorem (Bauschke–Güler–Lewis–Sendov) Let \(h \in \mathbb{R}[x_1, \ldots, x_n] \) a symmetric polynomial that is hyperbolic with respect to \(e = (1, \ldots, 1) \). Consider the function

\[
H : \text{Sym}_2(\mathbb{R}^d) \to \mathbb{R}, \quad X \mapsto h(\lambda(X))
\]

where \(\lambda(X) \) is the vector of eigenvalues of \(X \).

a) \(H \) is a polynomial.

b) \(H \) is hyperbolic with respect to \(I \).
Theorem (Bauschke–Güler–Lewis–Sendov) Let $h \in \mathbb{R}[x_1, \ldots, x_n]$ a symmetric polynomial that is hyperbolic with respect to $e = (1, \ldots, 1)$. Consider the function

$$H : \text{Sym}_2(\mathbb{R}^d) \to \mathbb{R}, \ X \mapsto h(\lambda(X))$$

where $\lambda(X)$ is the vector of eigenvalues of X.

a) H is a polynomial.

b) H is hyperbolic with respect to I.

c) $C(H, I) = \{X : \lambda(X) \in C(h, e)\}$.
Definition (Sanyal–Saunderson) A spectral convex set is a set of the form \(\{ X \in \text{Sym}_2(\mathbb{R}^d) : \lambda(X) \in K \} \) for some symmetric convex set \(K \subset \mathbb{R}^d \).

- Raman’s talk on Thursday!
Corollary

A symmetric $d \times d$ matrix A is in the hyperbolicity cone of $D_I^{d-k}(\det X)$ if and only if its spectrum $\lambda(A)$ is in the hyperbolicity cone of the elementary symmetric polynomial $\sigma_{k,d}$.
Corollary

A symmetric $d \times d$ matrix A is in the hyperbolicity cone of $D_i^{d-k}(\det X)$ if and only if its spectrum $\lambda(A)$ is in the hyperbolicity cone of the elementary symmetric polynomial $\sigma_{k,d}$.

Using this and a spectrahedral representation of the hyperbolicity cone of $\sigma_{d-1,d}$ due to Sanyal, Saunderson proved that the hyperbolicity cone of $D_i^1(\det X)$ is spectrahedral.
Corollary

A symmetric $d \times d$ matrix A is in the hyperbolicity cone of $D_i^{d-k}(\det X)$ if and only if its spectrum $\lambda(A)$ is in the hyperbolicity cone of the elementary symmetric polynomial $\sigma_{k,d}$.

- Using this and a spectrahedral representation of the hyperbolicity cone of $\sigma_{d-1,d}$ due to Sanyal, Saunderson proved that the hyperbolicity cone of $D_i^1(\det X)$ is spectrahedral.
- Brändén constructed a spectrahedral representation of the hyperbolicity cone of $\sigma_{k,d}$ for all k.
Question Let $S \subseteq \mathbb{R}^n$ be a spectrahedral cone which is symmetric under permuting the coordinates. Is the spectral convex set

$$\Lambda(S) = \{ A \in \text{Sym}_2(\mathbb{R}^n) : \lambda(A) \in S \}$$

also spectrahedral?
Question Let $S \subset \mathbb{R}^n$ be a spectrahedral cone which is symmetric under permuting the coordinates. Is the spectral convex set

$$\Lambda(S) = \{ A \in \text{Sym}_2(\mathbb{R}^n) : \lambda(A) \in S \}$$

also spectrahedral?

- $\Lambda(S)$ is a hyperbolicity cone. (Bauschke–Güler–Lewis–Sendov)
Question Let $S \subset \mathbb{R}^n$ be a spectrahedral cone which is symmetric under permuting the coordinates. Is the spectral convex set

$$\Lambda(S) = \{ A \in \text{Sym}_2(\mathbb{R}^n) : \lambda(A) \in S \}$$

also spectrahedral?

- $\Lambda(S)$ is a hyperbolicity cone. (Bauschke–Güler–Lewis–Sendov)
- Yes, if S is a polyhedral cone. (Sanyal–Saunderson)
Definition

A representation of \mathfrak{S}_n is *short* if it consists only of such irreducible representations that correspond to partitions of length at most 2.
Definition
A representation of \mathcal{S}_n is *short* if it consists only of such irreducible representations that correspond to partitions of length at most 2.

Short:

Not short:
Example
Let $\mathcal{M}_{d,n} \subset \mathbb{R}[x_1, \ldots, x_n]$ be the vector space of all homogeneous multiaffine polynomials of degree d. Then $\mathcal{M}_{d,n}$ is a short representation:

- $\mathcal{M}_{d,n} = \text{Ind}_{\mathfrak{S}_d \times \mathfrak{S}_{n-d}} (\text{Trv})$

- Young’s rule: $\mathcal{M}_{d,n} = \bigoplus_{i=0}^{\min(d,n-d)} V_{n-i,i}$
The main result

Theorem
Let V be a short representation of \mathfrak{S}_n and $\varphi : \mathbb{R}^n \to \text{Sym}_2(V)$ an \mathfrak{S}_n-linear map. Let $S \subset \mathbb{R}^n$ be the preimage of the positive semidefinite cone in $\text{Sym}_2(V)$ under φ. Then $\Lambda(S) \subset \text{Sym}_2(\mathbb{R}^n)$ is a spectrahedral cone.
The main result

Theorem

Let V be a short representation of S_n and $\varphi : \mathbb{R}^n \to \text{Sym}_2(V)$ an S_n-linear map. Let $S \subset \mathbb{R}^n$ be the preimage of the positive semidefinite cone in $\text{Sym}_2(V)$ under φ. Then $\Lambda(S) \subset \text{Sym}_2(\mathbb{R}^n)$ is a spectrahedral cone.

Corollary

The hyperbolicity cone of $D^k_I(\det A(x))$ spectrahedral.

- For any fixed k, the size of this spectrahedral representation is $O(n^2 \cdot (\min(k, n-k)+1))$ when the size n of $A(x)$ grows.
Theorem Let V be a short representation of \mathfrak{S}_n and

$$\varphi : \mathbb{R}^n \to \text{Sym}_2(V)$$

an \mathfrak{S}_n-linear map. Then there is a representation W of $O(n)$ and an $O(n)$-linear map map

$$\Phi : \text{Sym}_2(\mathbb{R}^n) \to \text{Sym}_2(W)$$

such that $\Phi(A)$ is positive semidefinite if and only $\varphi(\lambda(A))$ is positive semidefinite.
Idea of the proof

Let \(0 \leq 2d \leq n \). We have \(\mathcal{M}_{d,n} = \bigoplus_{i=0}^{d} V_{n-i,i} \). More precisely:

- \(V_{n-i,i} = \ker(D^{d-i+1}_e) \cap \ker(D^d_e)^\perp \)
Let $0 \leq 2d \leq n$. We have $\text{Ma}_{d,n} = \bigoplus_{i=0}^{d} V_{n-i,i}$. More precisely:

- $V_{n-i,i} = \ker(D_{e}^{d-i+1}) \cap \ker(D_{e}^{d-i})^\perp$

Let $\text{Min}_{d,n}$ the vector space spanned by the $d \times d$ minors of the generic symmetric $n \times n$ matrix.
Let $0 \leq 2d \leq n$. We have $M_{d,n} = \bigoplus_{i=0}^{d} V_{n-i,i}$. More precisely:

$V_{n-i,i} = \ker(D_{e}^{d-i+1}) \cap \ker(D_{e}^{d-i})^\perp$

Let $\text{Min}_{d,n}$ the vector space spanned by the $d \times d$ minors of the generic symmetric $n \times n$ matrix. Then:

The decomposition of the $O(n)$-module $\text{Min}_{d,n}$ into irreducibles is $\text{Min}_{d,n} = \bigoplus_{i=0}^{d} E^{(i,i)'}$.
Idea of the proof

Let $0 \leq 2d \leq n$. We have $\mathcal{M}_{d,n} = \bigoplus_{i=0}^{d} V_{n-i,i}$. More precisely:

- $V_{n-i,i} = \ker(D_{e}^{d-i+1}) \cap \ker(D_{e}^{d-i})^\perp$

Let $\text{Min}_{d,n}$ the vector space spanned by the $d \times d$ minors of the generic symmetric $n \times n$ matrix. Then:

- The decomposition of the $O(n)$-module $\text{Min}_{d,n}$ into irreducibles is $\text{Min}_{d,n} = \bigoplus_{i=0}^{d} E^{(i,i)}$.
- Here $E^{(i,i)} = \ker(D_{I}^{d-i+1}) \cap \ker(D_{I}^{d-i})^\perp$.
Idea of the proof

Let $0 \leq 2d \leq n$. We have $\text{Mat}_{d,n} = \bigoplus_{i=0}^{d} V_{n-i,i}$. More precisely:

$\triangleright \ V_{n-i,i} = \ker(D_{e}^{d-i+1}) \cap \ker(D_{e}^{d-i})^{\perp}$

Let $\text{Min}_{d,n}$ the vector space spanned by the $d \times d$ minors of the generic symmetric $n \times n$ matrix. Then:

$\triangleright \ $ The decomposition of the $O(n)$-module $\text{Min}_{d,n}$ into irreducibles is $\text{Min}_{d,n} = \bigoplus_{i=0}^{d} E(i,i)'$.

$\triangleright \ $ Here $E(i,i)' = \ker(D_{f}^{d-i+1}) \cap \ker(D_{f}^{d-i})^{\perp}$.

To obtain \mathcal{W} replace each $V_{n-i,i}$ in V by $E(i,i)'$.
Theorem (Newton) The function

\[N_k : \text{Sym}_2(\mathbb{R}^n) \to \mathbb{R}, \]

\[X \mapsto (k(n - k)\sigma_{k,n}^2 - (k + 1)(n - k + 1)\sigma_{k-1,n} \cdot \sigma_{k+1,n})(\lambda(X)) \]

is nonnegative.
Newton’s inequalities and sums of squares

Theorem (Newton) The function

\[N_k : \text{Sym}_2(\mathbb{R}^n) \to \mathbb{R}, \]

\[X \mapsto (k(n-k)\sigma_{k,n}^2 - (k+1)(n-k+1)\sigma_{k-1,n} \cdot \sigma_{k+1,n})(\lambda(X)) \]

is nonnegative.

Theorem The function \(N_k \) is a sum of squares of polynomials (in the entries of \(X \)).
Thanks!